2-edge-hamiltonian connectivity and the Thomassen conjecture

Roman Kužel 1,2

joint work with Peter Vrána and Zdeněk Ryjáček

Department of Mathematics and Institute for Theoretical Computer Science, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic

Abstract

Let G be a graph and $E^+(G) = \{xy : x, y \in V(G)\}$. For $X \subset E^+(G)$ set $G + X = (V(G), E(G) \cup X)$. We say, that G is 2-edge-hamiltonian connected if for any $X \subset E^+(G)$ of size two G + X has a hamiltonian cycle containing X. We show, that every 4-connected line-graph is hamiltonian if and only if every 4-connected line-graph is 2-edge-hamiltonian connected. If a graph G is 2-edge-hamiltonian connected if and only if G is 4-connected and thus it would be possible to decide about 2-edge-hamiltonian connectivity of line-graphs in polynomial time!

¹ Email: rkuzel@kma.zcu.cz

 $^{^2~}$ Supported by project 1M0545 and Research Plan MSM 4977751301 of the Czech Ministry of Education